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Redux
Advanced
state management
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Redux is an alternative to state management 

inside components
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Why / What you’ll learn

￫ Alternative UIs while reusing most of the business logic.

￫ Get undo / redo for free

￫ Automated bug reports with replay function



workshops.de

Why / What you’ll learn

This is how we 
manage state at the 
moment
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State management with Redux

Store

Everything is 
dispatched from 
and to one global 
store
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State management with Redux

Redux asks you to:

￫ Describe application state as plain objects and arrays

￫ Describe changes in the system as plain objects

￫ Describe the logic for handling changes as pure functions 

(explanation later)
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State management with Redux
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Redux Store

{
   dispatch,
   state {
      books,
      colorpicker
   },
   reducer
}

Redux uses a single store to manage everything. The store is just a POJO.

*POJO = Plain Old JavaScript Object
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Redux Store

{
   dispatch,
   state {
      books,
      colorpicker
   },
   reducer
}

Redux uses a single store to manage everything. The store is just a POJO.

*POJO = Plain Old JavaScript Object

This is our actual 
application state.
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Actions
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<code>Redux Action
A redux action is an object with a type and an optional payload that 
describes a state change

{
  type: 'ADD_BOOK',
  payload: {
    book: {...}
  }
}
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Action Creators
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<code>Action Creator
An action creator is a function that returns an action

function addBook(book: Book): AddBookAction {
  return {
    type: 'ADD_BOOK',
    payload: {
      book: book
    }
  }
}
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Reducers
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A Reducer transfers the 

store to another state



workshops.de

Reducers

Reducer New Store
State

Store
State

A reducer takes a state and an action and returns a new state. 

+ Action
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<code>Reducer
A reducer implementing the actual state change for an action type

function reducer(state: State = initialState, action: AllPossibleActions): State {
  switch(action.type) {
    case 'ADD_BOOK':
      let newState = { ...state }; // shallow copy of the state
      newState.books = [...state.books, action.book];
      return newState;
    case …
    default:

 return state;
  }
}
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Pure functions
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A pure function always returns 

the same output for a given input
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Why / What you’ll learn

Pure functions

￫ have no side effects

￫ are easy to reason about

￫ are easily testable
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<code>

function(n) {
  return n * n;
}

Pure function
This is a pure function
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<code>

function addMinutes(n: number) {
  const now = new Date(); 
  return now.setMinutes(now.getMinutes() + n);
}

Pure function
This is a NOT pure function
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Complete Redux 
cycle
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Redux cycle

Component

Action Creator

ActionDispatcher

Reducer

Store
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Redux cycle

GIF under MIT License taken from https://github.com/reduxjs/redux/blob/master/website/static/img/tutorials/essentials/ReduxDataFlowDiagram.gif
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Detour

Reducer in React
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A reducer-function transfers

one state to another state.

React has a useReducer-hook to implement 

such a pattern
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<code>

interface EmailState { email: string }
const initialState: EmailState = { email: "" }

type ChangeEmailAction = { type: "changeEmail"; payload: string };
type AllActions = ChangeEmailAction | ResetAction ;

const emailReducer = (state: EmailState, action: AllActions): EmailState => {
  switch (action.type) {
    case "changeEmail":
      return { ...state, email: action.payload }
    case "reset":
      return initialState;
  }
};

useReducer-hook in React
The useReducer-hook enables more complex state management.
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<code>

interface EmailState { email: string }
const initialState: EmailState = { email: "" }

type ChangeEmailAction = { type: "changeEmail"; payload: string };
type AllActions = ChangeEmailAction | ResetAction ;

const emailReducer = (state: EmailState, action: AllActions): EmailState => {
  switch (action.type) {
    case "changeEmail":
      return { ...state, email: action.payload }
    case "reset":
      return initialState;
  }
};

useReducer-hook in React
The useReducer-hook enables more complex state management.

Reducer: Function which takes the 
current state and an action and 
returns the new state.
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<code>

interface EmailState { email: string }
const initialState: EmailState = { email: "" }

type ChangeEmailAction = { type: "changeEmail"; payload: string };
type AllActions = ChangeEmailAction | ResetAction ;

const emailReducer = (state: EmailState, action: AllActions): EmailState => {
  switch (action.type) {
    case "changeEmail":
      return { ...state, email: action.payload }
    case "reset":
      return initialState;
  }
};

useReducer-hook in React
The useReducer-hook enables more complex state management.

For each action, compute the new 
state. TypeScript knows the shape 
of the action from the type defs.
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<code>

interface EmailState { email: string }
const initialState: EmailState = { email: "" }

type ChangeEmailAction = { type: "changeEmail"; payload: string };
type AllActions = ChangeEmailAction | ResetAction ;

const emailReducer = (state: EmailState, action: AllActions): EmailState => {
  switch (action.type) {
    case "changeEmail":
      return { ...state, email: action.payload }
    case "reset":
      return initialState;
  }
};

useReducer-hook in React
The useReducer-hook enables more complex state management.

Add a case-statement for each 
action. Omit the default so 
TypeScript tells you which cases 
are missing.
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<code>

const EmailForm = () => {
  const [state, dispatch] = useReducer(emailReducer, initialState);

  const handleEmailChange = (event) => {
    dispatch({ type: "changeEmail", payload: event.target.value });
  };

  return <input value={state.email} onChange={handleEmailChange} />;
};

useReducer-hook in React
In our component we dispatch actions instead directly changing the state.
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<code>

const EmailForm = () => {
  const [state, dispatch] = useReducer(emailReducer, initialState);

  const handleEmailChange = (event) => {
    dispatch({ type: "changeEmail", payload: event.target.value });
  };

  return <input value={state.email} onChange={handleEmailChange} />;
};

useReducer-hook in React
In our component we dispatch actions instead directly changing the state.

Pass in the reducer-function and 
its initial state.
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<code>

const EmailForm = () => {
  const [state, dispatch] = useReducer(emailReducer, initialState);

  const handleEmailChange = (event) => {
    dispatch({ type: "changeEmail", payload: event.target.value });
  };

  return <input value={state.email} onChange={handleEmailChange} />;
};

useReducer-hook in React
In our component we dispatch actions instead directly changing the state.

The hook returns the state and a 
function to dispatch actions.
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<code>

const EmailForm = () => {
  const [state, dispatch] = useReducer(emailReducer, initialState);

  const handleEmailChange = (event) => {
    dispatch({ type: "changeEmail", payload: event.target.value });
  };

  return <input value={state.email} onChange={handleEmailChange} />;
};

useReducer-hook in React
In our component we dispatch actions instead directly changing the state.

Read from the state.
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<code>

const EmailForm = () => {
  const [state, dispatch] = useReducer(emailReducer, initialState);

  const handleEmailChange = (event) => {
    dispatch({ type: "changeEmail", payload: event.target.value });
  };

  return <input value={state.email} onChange={handleEmailChange} />;
};

useReducer-hook in React
In our component we dispatch actions instead directly changing the state.

Trigger updates by 
dispatching a new action.
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Install Redux



workshops.de

How to install redux

￫ Not included in create-react-app

￫ Install it via npm

npm install --save redux react-redux

Redux contains the actual 
implementation of Redux.

(Similar as “React” is the 
pure React logic.)

React-redux contains the logic to 
connect Redux with React.

(Similar as “ReactDOM” is the 
renderer for React to the DOM.)
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Use @reduxjs/toolkit

￫ “The official, opinionated, batteries-included toolset for efficient Redux 

development”

￫ Install it via npm

npm install --save @reduxjs/toolkit react-redux

The toolkit contains Redux and 
additional functions to simplify the 
work with Redux and to reduce 
boilerplate.
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<code>Simplest Store
The simplest store is just a function without any actions

import { configureStore, combineReducers } from "@reduxjs/toolkit";

const initialState = {}
const books = (state =initialState) => state

const rootReducer = combineReducers({ books });

const store = configureStore({ reducer: rootReducer });

export default store;
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<code>Simplest Store
The simplest store is just a function without any actions

import { configureStore, combineReducers } from "@reduxjs/toolkit";

const initialState = {}
const books = (state =initialState) => state

const rootReducer = combineReducers({ books });

const store = configureStore({ reducer: rootReducer });

export default store;
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<code>Simplest Store
The simplest store is just a function without any actions

import { configureStore, combineReducers } from "@reduxjs/toolkit";

const initialState = {}
const books = (state =initialState) => state

const rootReducer = combineReducers({ books });

const store = configureStore({ reducer: rootReducer });

export default store;
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<code>Simplest Store
The simplest store is just a function without any actions

import { configureStore, combineReducers } from "@reduxjs/toolkit";

const initialState = {}
const books = (state = initialState) => state

const rootReducer = combineReducers({ books });

const store = configureStore({ reducer: rootReducer });

export default store;
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<code>

import {Provider} from 'react-redux'
import store from './store'

ReactDOM.render(
  <Provider store={store}>
    <App />
  </Provider>,
  document.getElementById('root')
);

Create and Provide your store
Use <Provider /> to make the Redux store available in your app
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Task
Install Redux and create store
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Connect a 
component to your 
store
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Modern Pattern:
useDispatch() and 
useSelector()
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Redux in your Components

Store

useDispatch()

useSelector() 1. Changes to the 
store are made via 
dispatched actions

2. State changes are 
mapped to props of 
a component
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<code>Redux in your Components
You can use the new hooks to create a connection to the Redux store.

import { useDispatch, useSelector } from "react-redux"; 

// usage in your component
const dispatch = useDispatch();
const books = useSelector(state => state.books);

return (
 <>
    { books.map(book => <BookDetails book={book} key={book.isbn} />)}
    <button onClick={() => dispatch(resetBooks())}>Reset books</button>
  </>
);



workshops.de

<code>Redux in your Components
useDispatch replaces mapDispatchToProps of the connect-HOC.

import { useDispatch, useSelector } from "react-redux"; 

// usage in your component
const dispatch = useDispatch();
const books = useSelector(state => state.books);

return (
 <>
    { books.map(book => <BookDetails book={book} key={book.isbn} />)}
    <button onClick={() => dispatch(resetBooks())}>Reset books</button>
  </>
);

Get access to the dispatch 
function and use it to dispatch 
an action to the Redux-store 
(created with an action creator).
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<code>Redux in your Components
useSelector replaces mapStateToProps of the connect-HOC.

import { useDispatch, useSelector } from "react-redux"; 

// usage in your component
const dispatch = useDispatch();
const books = useSelector(state => state.books);

return (
 <>
    { books.map(book => <BookDetails book={book} key={book.isbn} />)}
    <button onClick={() => dispatch(resetBooks())}>Reset books</button>
  </>
);

Retrieve data from your state 
inside your component.
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Alternative Pattern:
The connect() 
decorator
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Why / What you’ll learn

￫ How to use connect()

￫ What are the mapStateToProps and mapDispatchToProps functions

￫ What is a decorator function
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Repeat: State management with Redux

Store

mapDispatchToProps()

mapStateToProps() 1. Changes to the 
store are made via 
dispatched actions

2. State changes are 
mapped to props of 
a component
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What is a decorator?

￫ Design pattern

￫ Also known as wrapper

￫ Adds behavior to an individual object
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What is the connect() decorator?

￫ Connects a React component to a Redux store

￫ Providing a convenient API for the most common use cases

￫ Wrapping component is also called a Higher Order Component
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How to connect a component to your store 

Use the connect decorator

import {connect} from 'react-redux'

const ConnectedComponent = connect(

  (state) => {},

  (dispatch) => {}

)(Component);

ConnectedComponent

component

props

Store
dispatch mapStateToProps
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<code>

connect(
  (state) => { return {books : state.books} },
  (dispatch) => {
    return {
      onBookSelected : (book) => {
        return dispatch(selectBook(book))
      }
    }
  }
)(BookList);

Write your mapStateToProps function
Define how to map the state to your component props
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<code>

connect(
  (state) => { return {books : state.books} },
  (dispatch) => {
    return {
      onBookSelected : (book) => {
        return dispatch(selectBook(book))
      }
    }
  }
)(BookList);

Write your dispatch function
Define how to dispatch actions from your component
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<code>Write your dispatch function

const mapStateToProps = (state) => {
return { books: state.books };

}

const mapDispatchToProps = (dispatch) => {
return { onBookSelected: (book) => { dispatch(bookSelected(book))} };

}

BookList = connect(mapStateToProps, mapDispatchToProps)(BookList);

You can write explicit functions for easier understanding.
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<code>Write your dispatch function with ease
You can provide mapDispatchToProps as object.

// Default
const mapDispatchToProps = (dispatch) => {

return { onBookSelected: (book) => { dispatch(bookSelected(book))} };
}

// Easier and does the same thing
const mapDispatchToProps = {

onBookSelected: bookSelected
};
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Don’t mix patterns.

● It’s advised to not mix patterns. Either use hooks or the 

connect-function in one component to make it easier to understand 

where data is coming from.

● Using the connect-function might make your component easier to 

test or reuse, as the component itself receives all data as props.

● Using hooks follows the generally preferred pattern of composition.

💡
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<code>Recap: Action Creator
We can use an action creator to create our action to dispatch to Redux.

function addBooks(books: Book[]): AddBooksAction {
  return {
    type: 'addBooks',
    payload: books
  }
}
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<code>Typesafe action creator with Redux Toolkit
Redux Toolkit provides utilities to create typesafe actions for us.

import { createAction } from "@reduxjs/toolkit";

const addBooks = createAction<Book[]>("addBooks"); 
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<code>Typesafe action creator with Redux Toolkit
Redux Toolkit provides utilities to create typesafe actions for us.

import { createAction } from "@reduxjs/toolkit";

const addBooks = createAction<Book[]>("addBooks");

The type of our action.The type of our payload.
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Redux Slice
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<code>Use createSlice to create a reducer and action
Redux Toolkit provides utilities to create typesafe actions and reducers in 
combination.
import { PayloadAction, createSlice } from "@reduxjs/toolkit";

type AddBooksAction = PayloadAction<Book[]>;

const initialState: { books: Book[] } = { books };

const booksSlice = createSlice({
  name: "books",
  initialState,
  reducers: {
    addBooks(state, action: AddBooksAction) {
      state.books = action.payload
    },
  },
});

export const { addBooks } = booksSlice.actions;
export default booksSlice.reducer;



workshops.de

<code>Use createSlice to create a reducer and action
Redux Toolkit provides utilities to create typesafe actions and reducers in 
combination.
import { PayloadAction, createSlice } from "@reduxjs/toolkit";

type AddBooksAction = PayloadAction<Book[]>;

const initialState: { books: Book[] } = { books };

const booksSlice = createSlice({
  name: "books",
  initialState,
  reducers: {
    addBooks(state, action: AddBooksAction) {
      return { ...state, books: action.payload }
    },
  },
});

export const { addBooks } = booksSlice.actions;
export default booksSlice.reducer;

This is the namespace for all 
our actions. Our actions will 
later have a type 
“books/<ACTION_NAME>”
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<code>Use createSlice to create a reducer and action
Redux Toolkit provides utilities to create typesafe actions and reducers in 
combination.
import { PayloadAction, createSlice } from "@reduxjs/toolkit";

type AddBooksAction = PayloadAction<Book[]>;

const initialState: { books: Book[] } = { books: [] };

const booksSlice = createSlice({
  name: "books",
  initialState,
  reducers: {
    addBooks(state, action: AddBooksAction) {
      return { ...state, books: action.payload }
    },
  },
});

export const { addBooks } = booksSlice.actions;
export default booksSlice.reducer;

We define all our actions directly 
under the reducers-key. The name of 
the function is the name of the action 
creator. The argument type describes 
how we can later dispatch it.
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<code>Use createSlice to create a reducer and action
Redux Toolkit provides utilities to create typesafe actions and reducers in 
combination.
import { PayloadAction, createSlice } from "@reduxjs/toolkit";

type AddBooksAction = PayloadAction<Book[]>;

const initialState: { books: Book[] } = { books: [] };

const booksSlice = createSlice({
  name: "books",
  initialState,
  reducers: {
    addBooks(state, action: AddBooksAction) {
      return { ...state, books: action.payload }
    },
  },
});

export const { addBooks } = booksSlice.actions;
export default booksSlice.reducer;

Every slice exposes all actions and a 
reducer. The reducer has to be wired 
up when creating our store, the actions 
can be used in our application.
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<code>Use action creator from our slice
Use the action creator to dispatch an action to the store

// in src/store/books.ts
type AddBooksAction = PayloadAction<Book[]>;
export const { addBooks } = booksSlice.actions;

// in our component we import the action
import { addBooks } from "./store/books.ts"

// in our component we can use the action
const dispatch = useDispatch()

useEffect(() => {
  fetchBooks().then((books: Book[]) => {
    dispatch(addBooks(books));
  })
}, [])
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<code>Use action creator from our slice
Use the action creator to dispatch an action to the store

// in src/store/books.ts
type AddBooksAction = PayloadAction<Book[]>;
export const { addBooks } = booksSlice.actions;

// in our component we import the action
import { addBooks } from "./store/books.ts"

// in our component we can use the action
const dispatch = useDispatch()

useEffect(() => {
  fetchBooks().then((books: Book[]) => {
    dispatch(addBooks(books));
  })
}, [])

The type of the payload we pass 
into our action creator depends 
on how we typed it initially.
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Task
Redux count slice
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Selectors allow us to read data from the state.

They are simple functions taking the current state 

and returning a specific property of interest.
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<code>Simple selector
Create a simple function to extract data from the root state

// in src/store/index.ts
export type RootState = ReturnType<typeof rootReducer>;

// in src/store/selectors.ts
import { RootState } from "./index"

export const getBookIsbns = (state: RootState) =>
  state.books.map(book => book.isbn);

export const getBooksFromFowler = (state: RootState) =>
  state.books.filter(book => book.author === "Martin Fowler");

{
  books: [
    { title: "Martin Fowler" },
    // … other books ...
  ]
}
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<code>Simple selector
Create a simple function to extract data from the root state

// in src/store/index.ts
export type RootState = ReturnType<typeof rootReducer>;

// in src/store/selectors.ts
import { RootState } from "./index"

export const getBookIsbns = (state: RootState) =>
  state.books.map(book => book.isbn);

export const getBooksFromFowler = (state: RootState)=>
  state.books.filter(book => book.author === "Martin Fowler");

We need the shape of our state.
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<code>Simple selector
Create a simple function to extract data from the root state

// in src/store/index.ts
export type RootState = ReturnType<typeof rootReducer>;

// in src/store/selectors.ts
import { RootState } from "./index"

export const getBookIsbns = (state: RootState) =>
  state.books.map(book => book.isbn);

export const getBooksFromFowler = (state: RootState) =>
  state.books.filter(book => book.author === "Martin Fowler");

Take the root state and create 
a specific view on it, here the 
list of all ISBNs or a list of all 
books by a specific author.
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<code>Using a selector with hooks
Use the useSelector hook to execute the selector and use the data

import { useSelector } from "react-redux";
import { getBookIsbns } from "./store/selectors";

function IsbnList() {
  const isbns = useSelector<RootState, string[]>(getBookIsbns);

  return (
    <ul>{isbns.map(isbn => <li key={isbn}>{isbn}</li>)}</ul>
  );
}

export default Books;
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<code>Using a selector with hooks
Use the useSelector hook to execute the selector and use the data

import { useSelector } from "react-redux";
import { getBookIsbns } from "./store/selectors";

function IsbnList() {
  const isbns = useSelector<RootState, string[]>(getBookIsbns);

  return (
    <ul>{isbns.map(isbn => <li key={isbn}>{isbn}</li>)}</ul>
  );
}

export default Books;

Import the useSelector-hook 
from react-redux.
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<code>Using a selector with hooks
Use the useSelector hook to execute the selector and use the data

import { useSelector } from "react-redux";
import { getBookIsbns } from "./store/selectors";

function IsbnList() {
  const isbns = useSelector<RootState, string[]>(getBookIsbns);

  return (
    <ul>{isbns.map(isbn => <li key={isbn}>{isbn}</li>)}</ul>
  );
}

export default Books;

Import your selector-function 
and pass it as first argument to 
the useSelector-hook.



workshops.de

<code>Using a selector with hooks
Use the useSelector hook to execute the selector and use the data

import { useSelector } from "react-redux";
import { getBookIsbns } from "./store/selectors";

function IsbnList() {
  const isbns = useSelector<RootState, string[]>(getBookIsbns);

  return (
    <ul>{isbns.map(isbn => <li key={isbn}>{isbn}</li>)}</ul>
  );
}

export default Books;

Use the return value like any 
other value in your component.
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<code>Using a selector with hooks
Use the useSelector hook to execute the selector and use the data

import { useSelector } from "react-redux";
import { getBookIsbns } from "./store/selectors";

function IsbnList() {
  const isbns = useSelector<RootState, string[]>(getBookIsbns);

  return (
    <ul>{isbns.map(isbn => <li key={isbn}>{isbn}</li>)}</ul>
  );
}

export default Books;

We need to help the TypeScript 
compiler and type the selector.

Type of the root state Type of the return value of our 
selector and type of the variable
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We should treat our “state” as database and 

keep data in a normalized shape.

Selectors are like queries, allowing to retrieve 

data in the shape we need them in our app.

💡
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Task
Redux books slice
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Redux with Async 
Actions
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To handle asynchronous tasks, we either have to 

orchestrate our actions from our components or 

use a middleware like Redux Thunk.

@reduxjs/toolkit includes redux-thunk by default.

https://redux-toolkit.js.org/usage/usage-guide#async-requests-with-createasyncthunk
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Redux cycle with async actions
Component

Action 
Creator

ActionDispatcher

Reducer

Store

￫ Actions are synchronous

￫ First actions triggers an async function

￫ Async function returns a promise

￫ The promise resolves and triggers 

another action
Action Async 

Operation

.then()
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Redux cycle with async actions

GIF under MIT License taken from https://github.com/reduxjs/redux/blob/master/website/static/img/tutorials/essentials/ReduxAsyncDataFlowDiagram.gif
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<code>Creating an async thunk
Use the createAsyncThunk util to create your thunk.

export const fetchBooks = createAsyncThunk<Book[], void, {}>(
  "books/fetchBooks",
  async () => {
    const response = await fetch("http://localhost:4730/books");
    const books = await response.json();

    return books;
  }
);

Type of the return value Type of the thunk-argument

Type of the thunk-API



workshops.de

<code>Creating an async thunk
Use the createAsyncThunk util to create your thunk.

export const fetchBooks = createAsyncThunk<Book[], void, {}>(
  "books/fetchBooks",
  async () => {
    const response = await fetch("http://localhost:4730/books");
    const books = await response.json();

    return books;
  }
);

The name of our thunk-action. This 
will be the prefix used for all 
sub-actions, like prefix/fulfilled.
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<code>Creating an async thunk
Use the createAsyncThunk util to create your thunk.

export const fetchBooks = createAsyncThunk<Book[], void, {}>(
  "books/fetchBooks",
  async () => {
    const response = await fetch("http://localhost:4730/books");
    const books = await response.json();

    return books;
  }
);

Our asynchronous logic – we perform 
all our side effects and async tasks 
and return our final value. If required, 
we have access to the thunk-API like 
getState or dispatch.
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<code>Creating an async thunk
Use the createAsyncThunk util to create your thunk.

export const fetchBooks = createAsyncThunk<Book[], void, {}>(
  "books/fetchBooks",
  async (thunkArg, thunkApi) => {
    const response = await fetch("http://localhost:4730/books");
    const books = await response.json();

    return books;
  }
);

Our asynchronous logic – we perform 
all our side effects and async tasks 
and return our final value. If required, 
we have access to the thunk-API like 
getState or dispatch.
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<code>States of an async thunk
An async thunk dispatches multiple sub-actions to the store depending 
on its current state. We can react to each of them in our reducer.

export const fetchBooks = createAsyncThunk();

// the type of the thunk when it’s dispatched first but hasn’t finished yet
fetchBooks.pending;
// the type of the thunk when it’s finished without an error
fetchBooks.fulfilled;
// the type of the thunk when it’s finished with an error
fetchBooks.rejected;
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<code>Handling our async thunk in our slice
We need to handle our async thunk in the slice via the extraReducers.

export const fetchBooks = createAsyncThunk();

const booksSlice = createSlice({
  name: "books",
  initialState,
  reducers: { /* our normal reducers */ },
  extraReducers: (builder) => {
    builder.addCase(fetchBooks.fulfilled, (state, action) => {
      // our case-reducer for the fetchBooks-success-action
    })
  },
});

In our reducers, we can only handle 
actions which are defined there as well.
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<code>Handling our async thunk in our slice
We need to handle our async thunk in the slice via the extraReducers.

export const fetchBooks = createAsyncThunk();

const booksSlice = createSlice({
  name: "books",
  initialState,
  reducers: { /* our normal reducers */ },
  extraReducers: (builder) => {
    builder.addCase(fetchBooks.fulfilled, (state, action) => {
      // our case-reducer for the fetchBooks-success-action
    })
  },
});

We need to use the extraReducers for 
all additional actions we want to handle.
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<code>Handling our async thunk in our slice
We need to handle our async thunk in the slice via the extraReducers.

export const fetchBooks = createAsyncThunk();

const booksSlice = createSlice({
  name: "books",
  initialState,
  reducers: { /* our normal reducers */ },
  extraReducers: (builder) => {
    builder.addCase(fetchBooks.fulfilled, (state, action) => {
      // our case-reducer for the fetchBooks-success-action
    })
  },
});

Use the builder to create a case for 
every additional action we want to 
handle.
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<code>Handling our async thunk in our slice
We need to handle our async thunk in the slice via the extraReducers.

export const fetchBooks = createAsyncThunk();

const booksSlice = createSlice({
  name: "books",
  initialState,
  reducers: { /* our normal reducers */ },
  extraReducers: (builder) => {
    builder.addCase(fetchBooks.fulfilled, (state, action) => {
      // our case-reducer for the fetchBooks-success-action
    })
  },
});

Add a case for the success action of our 
thunk and handle it respectively.
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Task
Create an async action
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There are many middlewares available for Redux:

● For handling async tasks:

○ Redux Thunk

○ Redux-Saga

○ redux-observable

● …and many many more for many different use cases!

🗃

https://github.com/reduxjs/redux-thunk
https://redux-saga.js.org/
https://redux-observable.js.org/
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