
workshops.deC
op

yr
ig

ht
 (c

) 2
01

7
 W

or
ks

ho
ps

 E
ur

op
e

G
m

bH

Redux
Advanced
state management

workshops.de

Redux is an alternative to state management

inside components

workshops.de

Why / What you’ll learn

￫ Alternative UIs while reusing most of the business logic.

￫ Get undo / redo for free

￫ Automated bug reports with replay function

workshops.de

Why / What you’ll learn

This is how we
manage state at the
moment

workshops.de

State management with Redux

Store

Everything is
dispatched from
and to one global
store

workshops.de

State management with Redux

Redux asks you to:

￫ Describe application state as plain objects and arrays

￫ Describe changes in the system as plain objects

￫ Describe the logic for handling changes as pure functions

(explanation later)

workshops.de

State management with Redux

workshops.de

Redux Store

{
 dispatch,
 state {
 books,
 colorpicker
 },
 reducer
}

Redux uses a single store to manage everything. The store is just a POJO.

*POJO = Plain Old JavaScript Object

workshops.de

Redux Store

{
 dispatch,
 state {
 books,
 colorpicker
 },
 reducer
}

Redux uses a single store to manage everything. The store is just a POJO.

*POJO = Plain Old JavaScript Object

This is our actual
application state.

workshops.de

Actions

workshops.de

<code>Redux Action
A redux action is an object with a type and an optional payload that
describes a state change

{
 type: 'ADD_BOOK',
 payload: {
 book: {...}
 }
}

workshops.de

Action Creators

workshops.de

<code>Action Creator
An action creator is a function that returns an action

function addBook(book: Book): AddBookAction {
 return {
 type: 'ADD_BOOK',
 payload: {
 book: book
 }
 }
}

workshops.de

Reducers

workshops.de

A Reducer transfers the

store to another state

workshops.de

Reducers

Reducer New Store
State

Store
State

A reducer takes a state and an action and returns a new state.

+ Action

workshops.de

<code>Reducer
A reducer implementing the actual state change for an action type

function reducer(state: State = initialState, action: AllPossibleActions): State {
 switch(action.type) {
 case 'ADD_BOOK':
 let newState = { ...state }; // shallow copy of the state
 newState.books = [...state.books, action.book];
 return newState;
 case …
 default:

 return state;
 }
}

workshops.de

Pure functions

workshops.de

A pure function always returns

the same output for a given input

workshops.de

Why / What you’ll learn

Pure functions

￫ have no side effects

￫ are easy to reason about

￫ are easily testable

workshops.de

<code>

function(n) {
 return n * n;
}

Pure function
This is a pure function

workshops.de

<code>

function addMinutes(n: number) {
 const now = new Date();
 return now.setMinutes(now.getMinutes() + n);
}

Pure function
This is a NOT pure function

workshops.de

Complete Redux
cycle

workshops.de

Redux cycle

Component

Action Creator

ActionDispatcher

Reducer

Store

workshops.de

Redux cycle

GIF under MIT License taken from https://github.com/reduxjs/redux/blob/master/website/static/img/tutorials/essentials/ReduxDataFlowDiagram.gif

workshops.de

Detour

Reducer in React

workshops.de

A reducer-function transfers

one state to another state.

React has a useReducer-hook to implement

such a pattern

workshops.de

<code>

interface EmailState { email: string }
const initialState: EmailState = { email: "" }

type ChangeEmailAction = { type: "changeEmail"; payload: string };
type AllActions = ChangeEmailAction | ResetAction ;

const emailReducer = (state: EmailState, action: AllActions): EmailState => {
 switch (action.type) {
 case "changeEmail":
 return { ...state, email: action.payload }
 case "reset":
 return initialState;
 }
};

useReducer-hook in React
The useReducer-hook enables more complex state management.

workshops.de

<code>

interface EmailState { email: string }
const initialState: EmailState = { email: "" }

type ChangeEmailAction = { type: "changeEmail"; payload: string };
type AllActions = ChangeEmailAction | ResetAction ;

const emailReducer = (state: EmailState, action: AllActions): EmailState => {
 switch (action.type) {
 case "changeEmail":
 return { ...state, email: action.payload }
 case "reset":
 return initialState;
 }
};

useReducer-hook in React
The useReducer-hook enables more complex state management.

Reducer: Function which takes the
current state and an action and
returns the new state.

workshops.de

<code>

interface EmailState { email: string }
const initialState: EmailState = { email: "" }

type ChangeEmailAction = { type: "changeEmail"; payload: string };
type AllActions = ChangeEmailAction | ResetAction ;

const emailReducer = (state: EmailState, action: AllActions): EmailState => {
 switch (action.type) {
 case "changeEmail":
 return { ...state, email: action.payload }
 case "reset":
 return initialState;
 }
};

useReducer-hook in React
The useReducer-hook enables more complex state management.

For each action, compute the new
state. TypeScript knows the shape
of the action from the type defs.

workshops.de

<code>

interface EmailState { email: string }
const initialState: EmailState = { email: "" }

type ChangeEmailAction = { type: "changeEmail"; payload: string };
type AllActions = ChangeEmailAction | ResetAction ;

const emailReducer = (state: EmailState, action: AllActions): EmailState => {
 switch (action.type) {
 case "changeEmail":
 return { ...state, email: action.payload }
 case "reset":
 return initialState;
 }
};

useReducer-hook in React
The useReducer-hook enables more complex state management.

Add a case-statement for each
action. Omit the default so
TypeScript tells you which cases
are missing.

workshops.de

<code>

const EmailForm = () => {
 const [state, dispatch] = useReducer(emailReducer, initialState);

 const handleEmailChange = (event) => {
 dispatch({ type: "changeEmail", payload: event.target.value });
 };

 return <input value={state.email} onChange={handleEmailChange} />;
};

useReducer-hook in React
In our component we dispatch actions instead directly changing the state.

workshops.de

<code>

const EmailForm = () => {
 const [state, dispatch] = useReducer(emailReducer, initialState);

 const handleEmailChange = (event) => {
 dispatch({ type: "changeEmail", payload: event.target.value });
 };

 return <input value={state.email} onChange={handleEmailChange} />;
};

useReducer-hook in React
In our component we dispatch actions instead directly changing the state.

Pass in the reducer-function and
its initial state.

workshops.de

<code>

const EmailForm = () => {
 const [state, dispatch] = useReducer(emailReducer, initialState);

 const handleEmailChange = (event) => {
 dispatch({ type: "changeEmail", payload: event.target.value });
 };

 return <input value={state.email} onChange={handleEmailChange} />;
};

useReducer-hook in React
In our component we dispatch actions instead directly changing the state.

The hook returns the state and a
function to dispatch actions.

workshops.de

<code>

const EmailForm = () => {
 const [state, dispatch] = useReducer(emailReducer, initialState);

 const handleEmailChange = (event) => {
 dispatch({ type: "changeEmail", payload: event.target.value });
 };

 return <input value={state.email} onChange={handleEmailChange} />;
};

useReducer-hook in React
In our component we dispatch actions instead directly changing the state.

Read from the state.

workshops.de

<code>

const EmailForm = () => {
 const [state, dispatch] = useReducer(emailReducer, initialState);

 const handleEmailChange = (event) => {
 dispatch({ type: "changeEmail", payload: event.target.value });
 };

 return <input value={state.email} onChange={handleEmailChange} />;
};

useReducer-hook in React
In our component we dispatch actions instead directly changing the state.

Trigger updates by
dispatching a new action.

workshops.de

Install Redux

workshops.de

How to install redux

￫ Not included in create-react-app

￫ Install it via npm

npm install --save redux react-redux

Redux contains the actual
implementation of Redux.

(Similar as “React” is the
pure React logic.)

React-redux contains the logic to
connect Redux with React.

(Similar as “ReactDOM” is the
renderer for React to the DOM.)

workshops.de

Use @reduxjs/toolkit

￫ “The official, opinionated, batteries-included toolset for efficient Redux

development”

￫ Install it via npm

npm install --save @reduxjs/toolkit react-redux

The toolkit contains Redux and
additional functions to simplify the
work with Redux and to reduce
boilerplate.

workshops.de

<code>Simplest Store
The simplest store is just a function without any actions

import { configureStore, combineReducers } from "@reduxjs/toolkit";

const initialState = {}
const books = (state =initialState) => state

const rootReducer = combineReducers({ books });

const store = configureStore({ reducer: rootReducer });

export default store;

workshops.de

<code>Simplest Store
The simplest store is just a function without any actions

import { configureStore, combineReducers } from "@reduxjs/toolkit";

const initialState = {}
const books = (state =initialState) => state

const rootReducer = combineReducers({ books });

const store = configureStore({ reducer: rootReducer });

export default store;

workshops.de

<code>Simplest Store
The simplest store is just a function without any actions

import { configureStore, combineReducers } from "@reduxjs/toolkit";

const initialState = {}
const books = (state =initialState) => state

const rootReducer = combineReducers({ books });

const store = configureStore({ reducer: rootReducer });

export default store;

workshops.de

<code>Simplest Store
The simplest store is just a function without any actions

import { configureStore, combineReducers } from "@reduxjs/toolkit";

const initialState = {}
const books = (state = initialState) => state

const rootReducer = combineReducers({ books });

const store = configureStore({ reducer: rootReducer });

export default store;

workshops.de

<code>

import {Provider} from 'react-redux'
import store from './store'

ReactDOM.render(
 <Provider store={store}>
 <App />
 </Provider>,
 document.getElementById('root')
);

Create and Provide your store
Use <Provider /> to make the Redux store available in your app

workshops.de

Task
Install Redux and create store

workshops.de

Connect a
component to your
store

workshops.de

Modern Pattern:
useDispatch() and
useSelector()

workshops.de

Redux in your Components

Store

useDispatch()

useSelector() 1. Changes to the
store are made via
dispatched actions

2. State changes are
mapped to props of
a component

workshops.de

<code>Redux in your Components
You can use the new hooks to create a connection to the Redux store.

import { useDispatch, useSelector } from "react-redux";

// usage in your component
const dispatch = useDispatch();
const books = useSelector(state => state.books);

return (
 <>
 { books.map(book => <BookDetails book={book} key={book.isbn} />)}
 <button onClick={() => dispatch(resetBooks())}>Reset books</button>
 </>
);

workshops.de

<code>Redux in your Components
useDispatch replaces mapDispatchToProps of the connect-HOC.

import { useDispatch, useSelector } from "react-redux";

// usage in your component
const dispatch = useDispatch();
const books = useSelector(state => state.books);

return (
 <>
 { books.map(book => <BookDetails book={book} key={book.isbn} />)}
 <button onClick={() => dispatch(resetBooks())}>Reset books</button>
 </>
);

Get access to the dispatch
function and use it to dispatch
an action to the Redux-store
(created with an action creator).

workshops.de

<code>Redux in your Components
useSelector replaces mapStateToProps of the connect-HOC.

import { useDispatch, useSelector } from "react-redux";

// usage in your component
const dispatch = useDispatch();
const books = useSelector(state => state.books);

return (
 <>
 { books.map(book => <BookDetails book={book} key={book.isbn} />)}
 <button onClick={() => dispatch(resetBooks())}>Reset books</button>
 </>
);

Retrieve data from your state
inside your component.

workshops.de

Alternative Pattern:
The connect()
decorator

workshops.de

Why / What you’ll learn

￫ How to use connect()

￫ What are the mapStateToProps and mapDispatchToProps functions

￫ What is a decorator function

workshops.de

Repeat: State management with Redux

Store

mapDispatchToProps()

mapStateToProps() 1. Changes to the
store are made via
dispatched actions

2. State changes are
mapped to props of
a component

workshops.de

What is a decorator?

￫ Design pattern

￫ Also known as wrapper

￫ Adds behavior to an individual object

workshops.de

What is the connect() decorator?

￫ Connects a React component to a Redux store

￫ Providing a convenient API for the most common use cases

￫ Wrapping component is also called a Higher Order Component

workshops.de

How to connect a component to your store

Use the connect decorator

import {connect} from 'react-redux'

const ConnectedComponent = connect(

 (state) => {},

 (dispatch) => {}

)(Component);

ConnectedComponent

component

props

Store
dispatch mapStateToProps

workshops.de

<code>

connect(
 (state) => { return {books : state.books} },
 (dispatch) => {
 return {
 onBookSelected : (book) => {
 return dispatch(selectBook(book))
 }
 }
 }
)(BookList);

Write your mapStateToProps function
Define how to map the state to your component props

workshops.de

<code>

connect(
 (state) => { return {books : state.books} },
 (dispatch) => {
 return {
 onBookSelected : (book) => {
 return dispatch(selectBook(book))
 }
 }
 }
)(BookList);

Write your dispatch function
Define how to dispatch actions from your component

workshops.de

<code>Write your dispatch function

const mapStateToProps = (state) => {
return { books: state.books };

}

const mapDispatchToProps = (dispatch) => {
return { onBookSelected: (book) => { dispatch(bookSelected(book))} };

}

BookList = connect(mapStateToProps, mapDispatchToProps)(BookList);

You can write explicit functions for easier understanding.

workshops.de

<code>Write your dispatch function with ease
You can provide mapDispatchToProps as object.

// Default
const mapDispatchToProps = (dispatch) => {

return { onBookSelected: (book) => { dispatch(bookSelected(book))} };
}

// Easier and does the same thing
const mapDispatchToProps = {

onBookSelected: bookSelected
};

workshops.de

Don’t mix patterns.

● It’s advised to not mix patterns. Either use hooks or the

connect-function in one component to make it easier to understand

where data is coming from.

● Using the connect-function might make your component easier to

test or reuse, as the component itself receives all data as props.

● Using hooks follows the generally preferred pattern of composition.

💡

workshops.de

<code>Recap: Action Creator
We can use an action creator to create our action to dispatch to Redux.

function addBooks(books: Book[]): AddBooksAction {
 return {
 type: 'addBooks',
 payload: books
 }
}

workshops.de

<code>Typesafe action creator with Redux Toolkit
Redux Toolkit provides utilities to create typesafe actions for us.

import { createAction } from "@reduxjs/toolkit";

const addBooks = createAction<Book[]>("addBooks");

workshops.de

<code>Typesafe action creator with Redux Toolkit
Redux Toolkit provides utilities to create typesafe actions for us.

import { createAction } from "@reduxjs/toolkit";

const addBooks = createAction<Book[]>("addBooks");

The type of our action.The type of our payload.

workshops.de

Redux Slice

workshops.de

<code>Use createSlice to create a reducer and action
Redux Toolkit provides utilities to create typesafe actions and reducers in
combination.
import { PayloadAction, createSlice } from "@reduxjs/toolkit";

type AddBooksAction = PayloadAction<Book[]>;

const initialState: { books: Book[] } = { books };

const booksSlice = createSlice({
 name: "books",
 initialState,
 reducers: {
 addBooks(state, action: AddBooksAction) {
 state.books = action.payload
 },
 },
});

export const { addBooks } = booksSlice.actions;
export default booksSlice.reducer;

workshops.de

<code>Use createSlice to create a reducer and action
Redux Toolkit provides utilities to create typesafe actions and reducers in
combination.
import { PayloadAction, createSlice } from "@reduxjs/toolkit";

type AddBooksAction = PayloadAction<Book[]>;

const initialState: { books: Book[] } = { books };

const booksSlice = createSlice({
 name: "books",
 initialState,
 reducers: {
 addBooks(state, action: AddBooksAction) {
 return { ...state, books: action.payload }
 },
 },
});

export const { addBooks } = booksSlice.actions;
export default booksSlice.reducer;

This is the namespace for all
our actions. Our actions will
later have a type
“books/<ACTION_NAME>”

workshops.de

<code>Use createSlice to create a reducer and action
Redux Toolkit provides utilities to create typesafe actions and reducers in
combination.
import { PayloadAction, createSlice } from "@reduxjs/toolkit";

type AddBooksAction = PayloadAction<Book[]>;

const initialState: { books: Book[] } = { books: [] };

const booksSlice = createSlice({
 name: "books",
 initialState,
 reducers: {
 addBooks(state, action: AddBooksAction) {
 return { ...state, books: action.payload }
 },
 },
});

export const { addBooks } = booksSlice.actions;
export default booksSlice.reducer;

We define all our actions directly
under the reducers-key. The name of
the function is the name of the action
creator. The argument type describes
how we can later dispatch it.

workshops.de

<code>Use createSlice to create a reducer and action
Redux Toolkit provides utilities to create typesafe actions and reducers in
combination.
import { PayloadAction, createSlice } from "@reduxjs/toolkit";

type AddBooksAction = PayloadAction<Book[]>;

const initialState: { books: Book[] } = { books: [] };

const booksSlice = createSlice({
 name: "books",
 initialState,
 reducers: {
 addBooks(state, action: AddBooksAction) {
 return { ...state, books: action.payload }
 },
 },
});

export const { addBooks } = booksSlice.actions;
export default booksSlice.reducer;

Every slice exposes all actions and a
reducer. The reducer has to be wired
up when creating our store, the actions
can be used in our application.

workshops.de

<code>Use action creator from our slice
Use the action creator to dispatch an action to the store

// in src/store/books.ts
type AddBooksAction = PayloadAction<Book[]>;
export const { addBooks } = booksSlice.actions;

// in our component we import the action
import { addBooks } from "./store/books.ts"

// in our component we can use the action
const dispatch = useDispatch()

useEffect(() => {
 fetchBooks().then((books: Book[]) => {
 dispatch(addBooks(books));
 })
}, [])

workshops.de

<code>Use action creator from our slice
Use the action creator to dispatch an action to the store

// in src/store/books.ts
type AddBooksAction = PayloadAction<Book[]>;
export const { addBooks } = booksSlice.actions;

// in our component we import the action
import { addBooks } from "./store/books.ts"

// in our component we can use the action
const dispatch = useDispatch()

useEffect(() => {
 fetchBooks().then((books: Book[]) => {
 dispatch(addBooks(books));
 })
}, [])

The type of the payload we pass
into our action creator depends
on how we typed it initially.

workshops.de

Task
Redux count slice

workshops.de

Selectors allow us to read data from the state.

They are simple functions taking the current state

and returning a specific property of interest.

workshops.de

<code>Simple selector
Create a simple function to extract data from the root state

// in src/store/index.ts
export type RootState = ReturnType<typeof rootReducer>;

// in src/store/selectors.ts
import { RootState } from "./index"

export const getBookIsbns = (state: RootState) =>
 state.books.map(book => book.isbn);

export const getBooksFromFowler = (state: RootState) =>
 state.books.filter(book => book.author === "Martin Fowler");

{
 books: [
 { title: "Martin Fowler" },
 // … other books ...
]
}

workshops.de

<code>Simple selector
Create a simple function to extract data from the root state

// in src/store/index.ts
export type RootState = ReturnType<typeof rootReducer>;

// in src/store/selectors.ts
import { RootState } from "./index"

export const getBookIsbns = (state: RootState) =>
 state.books.map(book => book.isbn);

export const getBooksFromFowler = (state: RootState)=>
 state.books.filter(book => book.author === "Martin Fowler");

We need the shape of our state.

workshops.de

<code>Simple selector
Create a simple function to extract data from the root state

// in src/store/index.ts
export type RootState = ReturnType<typeof rootReducer>;

// in src/store/selectors.ts
import { RootState } from "./index"

export const getBookIsbns = (state: RootState) =>
 state.books.map(book => book.isbn);

export const getBooksFromFowler = (state: RootState) =>
 state.books.filter(book => book.author === "Martin Fowler");

Take the root state and create
a specific view on it, here the
list of all ISBNs or a list of all
books by a specific author.

workshops.de

<code>Using a selector with hooks
Use the useSelector hook to execute the selector and use the data

import { useSelector } from "react-redux";
import { getBookIsbns } from "./store/selectors";

function IsbnList() {
 const isbns = useSelector<RootState, string[]>(getBookIsbns);

 return (
 {isbns.map(isbn => <li key={isbn}>{isbn})}
);
}

export default Books;

workshops.de

<code>Using a selector with hooks
Use the useSelector hook to execute the selector and use the data

import { useSelector } from "react-redux";
import { getBookIsbns } from "./store/selectors";

function IsbnList() {
 const isbns = useSelector<RootState, string[]>(getBookIsbns);

 return (
 {isbns.map(isbn => <li key={isbn}>{isbn})}
);
}

export default Books;

Import the useSelector-hook
from react-redux.

workshops.de

<code>Using a selector with hooks
Use the useSelector hook to execute the selector and use the data

import { useSelector } from "react-redux";
import { getBookIsbns } from "./store/selectors";

function IsbnList() {
 const isbns = useSelector<RootState, string[]>(getBookIsbns);

 return (
 {isbns.map(isbn => <li key={isbn}>{isbn})}
);
}

export default Books;

Import your selector-function
and pass it as first argument to
the useSelector-hook.

workshops.de

<code>Using a selector with hooks
Use the useSelector hook to execute the selector and use the data

import { useSelector } from "react-redux";
import { getBookIsbns } from "./store/selectors";

function IsbnList() {
 const isbns = useSelector<RootState, string[]>(getBookIsbns);

 return (
 {isbns.map(isbn => <li key={isbn}>{isbn})}
);
}

export default Books;

Use the return value like any
other value in your component.

workshops.de

<code>Using a selector with hooks
Use the useSelector hook to execute the selector and use the data

import { useSelector } from "react-redux";
import { getBookIsbns } from "./store/selectors";

function IsbnList() {
 const isbns = useSelector<RootState, string[]>(getBookIsbns);

 return (
 {isbns.map(isbn => <li key={isbn}>{isbn})}
);
}

export default Books;

We need to help the TypeScript
compiler and type the selector.

Type of the root state Type of the return value of our
selector and type of the variable

workshops.de

We should treat our “state” as database and

keep data in a normalized shape.

Selectors are like queries, allowing to retrieve

data in the shape we need them in our app.

💡

workshops.de

Task
Redux books slice

workshops.de

Redux with Async
Actions

workshops.de

To handle asynchronous tasks, we either have to

orchestrate our actions from our components or

use a middleware like Redux Thunk.

@reduxjs/toolkit includes redux-thunk by default.

https://redux-toolkit.js.org/usage/usage-guide#async-requests-with-createasyncthunk

workshops.de

Redux cycle with async actions
Component

Action
Creator

ActionDispatcher

Reducer

Store

￫ Actions are synchronous

￫ First actions triggers an async function

￫ Async function returns a promise

￫ The promise resolves and triggers

another action
Action Async

Operation

.then()

workshops.de

Redux cycle with async actions

GIF under MIT License taken from https://github.com/reduxjs/redux/blob/master/website/static/img/tutorials/essentials/ReduxAsyncDataFlowDiagram.gif

workshops.de

<code>Creating an async thunk
Use the createAsyncThunk util to create your thunk.

export const fetchBooks = createAsyncThunk<Book[], void, {}>(
 "books/fetchBooks",
 async () => {
 const response = await fetch("http://localhost:4730/books");
 const books = await response.json();

 return books;
 }
);

Type of the return value Type of the thunk-argument

Type of the thunk-API

workshops.de

<code>Creating an async thunk
Use the createAsyncThunk util to create your thunk.

export const fetchBooks = createAsyncThunk<Book[], void, {}>(
 "books/fetchBooks",
 async () => {
 const response = await fetch("http://localhost:4730/books");
 const books = await response.json();

 return books;
 }
);

The name of our thunk-action. This
will be the prefix used for all
sub-actions, like prefix/fulfilled.

workshops.de

<code>Creating an async thunk
Use the createAsyncThunk util to create your thunk.

export const fetchBooks = createAsyncThunk<Book[], void, {}>(
 "books/fetchBooks",
 async () => {
 const response = await fetch("http://localhost:4730/books");
 const books = await response.json();

 return books;
 }
);

Our asynchronous logic – we perform
all our side effects and async tasks
and return our final value. If required,
we have access to the thunk-API like
getState or dispatch.

workshops.de

<code>Creating an async thunk
Use the createAsyncThunk util to create your thunk.

export const fetchBooks = createAsyncThunk<Book[], void, {}>(
 "books/fetchBooks",
 async (thunkArg, thunkApi) => {
 const response = await fetch("http://localhost:4730/books");
 const books = await response.json();

 return books;
 }
);

Our asynchronous logic – we perform
all our side effects and async tasks
and return our final value. If required,
we have access to the thunk-API like
getState or dispatch.

workshops.de

<code>States of an async thunk
An async thunk dispatches multiple sub-actions to the store depending
on its current state. We can react to each of them in our reducer.

export const fetchBooks = createAsyncThunk();

// the type of the thunk when it’s dispatched first but hasn’t finished yet
fetchBooks.pending;
// the type of the thunk when it’s finished without an error
fetchBooks.fulfilled;
// the type of the thunk when it’s finished with an error
fetchBooks.rejected;

workshops.de

<code>Handling our async thunk in our slice
We need to handle our async thunk in the slice via the extraReducers.

export const fetchBooks = createAsyncThunk();

const booksSlice = createSlice({
 name: "books",
 initialState,
 reducers: { /* our normal reducers */ },
 extraReducers: (builder) => {
 builder.addCase(fetchBooks.fulfilled, (state, action) => {
 // our case-reducer for the fetchBooks-success-action
 })
 },
});

In our reducers, we can only handle
actions which are defined there as well.

workshops.de

<code>Handling our async thunk in our slice
We need to handle our async thunk in the slice via the extraReducers.

export const fetchBooks = createAsyncThunk();

const booksSlice = createSlice({
 name: "books",
 initialState,
 reducers: { /* our normal reducers */ },
 extraReducers: (builder) => {
 builder.addCase(fetchBooks.fulfilled, (state, action) => {
 // our case-reducer for the fetchBooks-success-action
 })
 },
});

We need to use the extraReducers for
all additional actions we want to handle.

workshops.de

<code>Handling our async thunk in our slice
We need to handle our async thunk in the slice via the extraReducers.

export const fetchBooks = createAsyncThunk();

const booksSlice = createSlice({
 name: "books",
 initialState,
 reducers: { /* our normal reducers */ },
 extraReducers: (builder) => {
 builder.addCase(fetchBooks.fulfilled, (state, action) => {
 // our case-reducer for the fetchBooks-success-action
 })
 },
});

Use the builder to create a case for
every additional action we want to
handle.

workshops.de

<code>Handling our async thunk in our slice
We need to handle our async thunk in the slice via the extraReducers.

export const fetchBooks = createAsyncThunk();

const booksSlice = createSlice({
 name: "books",
 initialState,
 reducers: { /* our normal reducers */ },
 extraReducers: (builder) => {
 builder.addCase(fetchBooks.fulfilled, (state, action) => {
 // our case-reducer for the fetchBooks-success-action
 })
 },
});

Add a case for the success action of our
thunk and handle it respectively.

workshops.de

Task
Create an async action

workshops.de

There are many middlewares available for Redux:

● For handling async tasks:

○ Redux Thunk

○ Redux-Saga

○ redux-observable

● …and many many more for many different use cases!

🗃

https://github.com/reduxjs/redux-thunk
https://redux-saga.js.org/
https://redux-observable.js.org/

We teach.
workshops.de

